Selected Publications

  1. Confino S, Dor T, Tovin A, Wexler Y, Ben-Moshe Livne Z, Kolker M, Pisanty O, Park SK, Geyer N, Reiter J, Edvardson S, Mor-Shaked H, Elpeleg O, Vallone D, Appelbaum L, Foulkes NS, Gothilf Y. A Zebrafish Model for a Rare Genetic Disease Reveals a Conserved Role for FBXL3 in the Circadian Clock System. Int J Mol Sci. 2022 Feb 21;23(4):2373. doi: 10.3390/ijms23042373. PMID: 35216494.

  2. Ruggiero G, Ben-Moshe Livne Z, Wexler Y, Geyer N, Vallone D, Gothilf Y, Foulkes NS (2021). Period 2: A Regulator of Multiple Tissue-Specific Circadian FunctionsFront Mol Neurosci. Sep 3;14:718387.

  3. Etzion T, Zmora N, Zohar Y, Levavi-Sivan B, Golan M, Gothilf Y (2020). Ectopic over expression of kiss1 may compensate for the loss of kiss2Gen Comp Endocrinol. Sep 1;295:113523.

  4. Shainer I, Michel M, Marquart GD, Bhandiwad AA, Zmora N, Ben-Moshe Livne Z, Zohar Y, Hazak A, Mazon Y, Förster D, Hollander-Cohen L, Cone RD, Burgess HA and Gothilf Y (2019). Agouti-Related Protein 2 Is a New Player in the Teleost Stress Response SystemCurrent Biology 29(12):2009-2019.e7.‏

  5. Sloin HE, Ruggiero G, Rubinstein A, Smadja-Storz S, Foulkes NS, Gothilf Y (2018). Interactions between the circadian clock and TGF-β signaling pathway in zebrafish. PLoS One 13(6): e0199777.

  6. Shainer I, Buchshtab A, Hawkins TA, Wilson SW, Cone RD and Gothilf Y (2017). Novel hypophysiotropic AgRP2 neurons and pineal cells revealed by BAC transgenesis in zebrafish.  Scientific Reports 7:44777.

  7. Ben-Moshe Livne Z, Alon S, Vallone D, Bayleyen Y, Tovin A, Shainer I, Nisembaum LG, Aviram I, Smadja-Storz S, Fuentes M, Falcón J, Eisenberg E, Klein DC, Burgess HA, Foulkes NS, Gothilf Y (2016). Genetically Blocking the Zebrafish Pineal Clock Affects Circadian BehaviorPLoS Genet. 21;12(11):e1006445.

  8. Ben-Moshe Z, Foulkes NS and Gothilf Y (2014). Functional development of the circadian clock in the zebrafish pineal gland. Biomed Res Int 2014: 235781.

  9. Ben-Moshe Z, Alon S, Mracek P, Faigenbloom L, Tovin A, Vatine GD, Eisenberg E, Foulkes NS and Gothilf Y (2014). The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light. Nucleic Acids Res 42(6): 3750-3767.

  10. Smadja Storz S, Tovin A, Mracek P, Alon S, Foulkes NS and Gothilf Y (2013). Casein kinase 1delta activity: a key element in the zebrafish circadian timing system. PLoS One 8(1): e54189.

  11. Elbaz I, Foulkes NS, Gothilf Y and Appelbaum L (2013). Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish. Front Neural Circuits 7: 9.

  12. Tovin A, Alon S, Ben-Moshe Z, Mracek P, Vatine G, Foulkes NS, Jacob-Hirsch J, Rechavi G, Toyama R, Coon SL, Klein DC, Eisenberg E and Gothilf Y (2012). Systematic identification of rhythmic genes reveals camk1gb as a new element in the circadian clockwork. PLoS Genet 8(12): e1003116.

  13. Idda ML, Bertolucci C, Vallone D, Gothilf Y, Sanchez-Vazquez FJ and Foulkes NS (2012). Circadian clocks: lessons from fish. Prog Brain Res 199: 41-57.

  14. Vatine G, Vallone D, Gothilf Y and Foulkes NS (2011). It's time to swim! Zebrafish and the circadian clock. FEBS Lett 585(10): 1485-1494.

  15. Ben-Moshe Z, Vatine G, Alon S, Tovin A, Mracek P, Foulkes NS and Gothilf Y (2010). Multiple PAR and E4BP4 bZIP transcription factors in zebrafish: diverse spatial and temporal expression patterns. Chronobiol Int 27(8): 1509-1531.

  16. Vatine G, Vallone D, Appelbaum L, Mracek P, Ben-Moshe Z, Lahiri K, Gothilf Y and Foulkes NS (2009). Light directs zebrafish period2 expression via conserved D and E boxes. PLoS Biol 7(10): e1000223.

  17. Palevitch O, Abraham E, Borodovsky N, Levkowitz G, Zohar Y and Gothilf Y (2009). Cxcl12a-Cxcr4b signaling is important for proper development of the forebrain GnRH system in zebrafish. Gen Comp Endocrinol 165(2): 262-268.

  18. Palevitch O, Abraham E, Borodovsky N, Levkowitz G, Zohar Y and Gothilf Y (2009). Nasal embryonic LHRH factor plays a role in the developmental migration and projection of gonadotropin-releasing hormone 3 neurons in zebrafish. Dev Dyn 238(1): 66-75.

  19. Abraham E, Palevitch O, Gothilf Y and Zohar Y (2009). Targeted gonadotropin-releasing hormone-3 neuron ablation in zebrafish: effects on neurogenesis, neuronal migration, and reproduction. Endocrinology 151(1): 332-340.

  20. Abraham E, Palevitch O, Gothilf Y and Zohar Y (2009). The zebrafish as a model system for forebrain GnRH neuronal development. Gen Comp Endocrinol 164(2-3): 151-160.

  21. Abraham E, Palevitch O, Ijiri S, Du SJ, Gothilf Y and Zohar Y (2008). Early development of forebrain gonadotrophin-releasing hormone (GnRH) neurones and the role of GnRH as an autocrine migration factor. J Neuroendocrinol 20(3): 394-405.

  22. Palevitch O, Kight K, Abraham E, Wray S, Zohar Y and Gothilf Y (2007). Ontogeny of the GnRH systems in zebrafish brain: in situ hybridization and promoter-reporter expression analyses in intact animals. Cell Tissue Res 327(2): 313-322.

  23. Levy O, Appelbaum L, Leggat W, Gothlif Y, Hayward DC, Miller DJ and Hoegh-Guldberg O (2007). Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science 318(5849): 467-470.

  24. Ziv L and Gothilf Y (2006). Circadian time-keeping during early stages of development. Proc Natl Acad Sci U S A 103(11): 4146-4151.

  25. Zilberman-Peled B, Ron B, Gross A, Finberg JP and Gothilf Y (2006). A possible new role for fish retinal serotonin-N-acetyltransferase-1 (AANAT1): Dopamine metabolism. Brain Res 1073-1074: 220-228.

  26. Appelbaum L and Gothilf Y (2006). Mechanism of pineal-specific gene expression: the role of E-box and photoreceptor conserved elements. Mol Cell Endocrinol 252(1-2): 27-33.

  27. Ziv L, Levkovitz S, Toyama R, Falcon J and Gothilf Y (2005). Functional development of the zebrafish pineal gland: light-induced expression of period2 is required for onset of the circadian clock. J Neuroendocrinol 17(5): 314-320.

  28. Appelbaum L, Anzulovich A, Baler R and Gothilf Y (2005). Homeobox-clock protein interaction in zebrafish. A shared mechanism for pineal-specific and circadian gene expression. J Biol Chem 280(12): 11544-11551.

  29. Appelbaum L, Toyama R, Dawid IB, Klein DC, Baler R and Gothilf Y (2004). Zebrafish serotonin-N-acetyltransferase-2 gene regulation: pineal-restrictive downstream module contains a functional E-box and three photoreceptor conserved elements. Mol Endocrinol 18(5): 1210-1221.

  30. Falcon J, Gothilf Y, Coon SL, Boeuf G and Klein DC (2003). Genetic, temporal and developmental differences between melatonin rhythm generating systems in the teleost fish pineal organ and retina. J Neuroendocrinol 15(4): 378-382.

  31. Gothilf Y, Toyama R, Coon SL, Du SJ, Dawid IB and Klein DC (2002). Pineal-specific expression of green fluorescent protein under the control of the serotonin-N-acetyltransferase gene regulatory regions in transgenic zebrafish. Dev Dyn 225(3): 241-249.

  32. Gothilf Y, Coon SL, Toyama R, Chitnis A, Namboodiri MA and Klein DC (1999). Zebrafish serotonin N-acetyltransferase-2: marker for development of pineal photoreceptors and circadian clock function. Endocrinology 140(10): 4895-4903.

  33. Gothilf Y, Munoz-Cueto JA, Sagrillo CA, Selmanoff M, Chen TT, Kah O, Elizur A and Zohar Y (1996). Three forms of gonadotropin-releasing hormone in a perciform fish (Sparus aurata): complementary deoxyribonucleic acid characterization and brain localization. Biol Reprod 55(3): 636-645.