top of page

Selected Publications

  1. Elazary Y, Cheow K, Cheng RK, Ghosh R, Shainer I, Wexler Y, Crasta K, Gothilf Y, Jesuthasan SJ (2023). Glial cells expressing visual cycle genes are vital for photoreceptor survival in the zebrafish pineal gland. J Pineal Res. Apr;74(3):e12854. doi: 10.1111/jpi.12854.

  2. Confino S, Dor T, Tovin A, Wexler Y, Ben-Moshe Livne Z, Kolker M, Pisanty O, Park SK, Geyer N, Reiter J, Edvardson S, Mor-Shaked H, Elpeleg O, Vallone D, Appelbaum L, Foulkes NS, Gothilf Y (2022). A Zebrafish Model for a Rare Genetic Disease Reveals a Conserved Role for FBXL3 in the Circadian Clock System. Int J Mol Sci. Feb 21;23(4):2373. doi: 10.3390/ijms23042373. PMID: 35216494.

  3. Ruggiero G, Ben-Moshe Livne Z, Wexler Y, Geyer N, Vallone D, Gothilf Y, Foulkes NS (2021). Period 2: A Regulator of Multiple Tissue-Specific Circadian FunctionsFront Mol Neurosci. Sep 3;14:718387.

  4. Etzion T, Zmora N, Zohar Y, Levavi-Sivan B, Golan M, Gothilf Y (2020). Ectopic over expression of kiss1 may compensate for the loss of kiss2Gen Comp Endocrinol. Sep 1;295:113523.

  5. Shainer I, Michel M, Marquart GD, Bhandiwad AA, Zmora N, Ben-Moshe Livne Z, Zohar Y, Hazak A, Mazon Y, Förster D, Hollander-Cohen L, Cone RD, Burgess HA and Gothilf Y (2019). Agouti-Related Protein 2 Is a New Player in the Teleost Stress Response SystemCurrent Biology 29(12):2009-2019.e7.‏

  6. Sloin HE, Ruggiero G, Rubinstein A, Smadja-Storz S, Foulkes NS, Gothilf Y (2018). Interactions between the circadian clock and TGF-β signaling pathway in zebrafish. PLoS One 13(6): e0199777.

  7. Shainer I, Buchshtab A, Hawkins TA, Wilson SW, Cone RD and Gothilf Y (2017). Novel hypophysiotropic AgRP2 neurons and pineal cells revealed by BAC transgenesis in zebrafish.  Scientific Reports 7:44777.

  8. Ben-Moshe Livne Z, Alon S, Vallone D, Bayleyen Y, Tovin A, Shainer I, Nisembaum LG, Aviram I, Smadja-Storz S, Fuentes M, Falcón J, Eisenberg E, Klein DC, Burgess HA, Foulkes NS, Gothilf Y (2016). Genetically Blocking the Zebrafish Pineal Clock Affects Circadian BehaviorPLoS Genet. 21;12(11):e1006445.

  9. Ben-Moshe Z, Foulkes NS and Gothilf Y (2014). Functional development of the circadian clock in the zebrafish pineal gland. Biomed Res Int 2014: 235781.

  10. Ben-Moshe Z, Alon S, Mracek P, Faigenbloom L, Tovin A, Vatine GD, Eisenberg E, Foulkes NS and Gothilf Y (2014). The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light. Nucleic Acids Res 42(6): 3750-3767.

  11. Smadja Storz S, Tovin A, Mracek P, Alon S, Foulkes NS and Gothilf Y (2013). Casein kinase 1delta activity: a key element in the zebrafish circadian timing system. PLoS One 8(1): e54189.

  12. Elbaz I, Foulkes NS, Gothilf Y and Appelbaum L (2013). Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish. Front Neural Circuits 7: 9.

  13. Tovin A, Alon S, Ben-Moshe Z, Mracek P, Vatine G, Foulkes NS, Jacob-Hirsch J, Rechavi G, Toyama R, Coon SL, Klein DC, Eisenberg E and Gothilf Y (2012). Systematic identification of rhythmic genes reveals camk1gb as a new element in the circadian clockwork. PLoS Genet 8(12): e1003116.

  14. Idda ML, Bertolucci C, Vallone D, Gothilf Y, Sanchez-Vazquez FJ and Foulkes NS (2012). Circadian clocks: lessons from fish. Prog Brain Res 199: 41-57.

  15. Vatine G, Vallone D, Gothilf Y and Foulkes NS (2011). It's time to swim! Zebrafish and the circadian clock. FEBS Lett 585(10): 1485-1494.

  16. Ben-Moshe Z, Vatine G, Alon S, Tovin A, Mracek P, Foulkes NS and Gothilf Y (2010). Multiple PAR and E4BP4 bZIP transcription factors in zebrafish: diverse spatial and temporal expression patterns. Chronobiol Int 27(8): 1509-1531.

  17. Vatine G, Vallone D, Appelbaum L, Mracek P, Ben-Moshe Z, Lahiri K, Gothilf Y and Foulkes NS (2009). Light directs zebrafish period2 expression via conserved D and E boxes. PLoS Biol 7(10): e1000223.

  18. Palevitch O, Abraham E, Borodovsky N, Levkowitz G, Zohar Y and Gothilf Y (2009). Cxcl12a-Cxcr4b signaling is important for proper development of the forebrain GnRH system in zebrafish. Gen Comp Endocrinol 165(2): 262-268.

  19. Palevitch O, Abraham E, Borodovsky N, Levkowitz G, Zohar Y and Gothilf Y (2009). Nasal embryonic LHRH factor plays a role in the developmental migration and projection of gonadotropin-releasing hormone 3 neurons in zebrafish. Dev Dyn 238(1): 66-75.

  20. Abraham E, Palevitch O, Gothilf Y and Zohar Y (2009). Targeted gonadotropin-releasing hormone-3 neuron ablation in zebrafish: effects on neurogenesis, neuronal migration, and reproduction. Endocrinology 151(1): 332-340.

  21. Abraham E, Palevitch O, Gothilf Y and Zohar Y (2009). The zebrafish as a model system for forebrain GnRH neuronal development. Gen Comp Endocrinol 164(2-3): 151-160.

  22. Abraham E, Palevitch O, Ijiri S, Du SJ, Gothilf Y and Zohar Y (2008). Early development of forebrain gonadotrophin-releasing hormone (GnRH) neurones and the role of GnRH as an autocrine migration factor. J Neuroendocrinol 20(3): 394-405.

  23. Palevitch O, Kight K, Abraham E, Wray S, Zohar Y and Gothilf Y (2007). Ontogeny of the GnRH systems in zebrafish brain: in situ hybridization and promoter-reporter expression analyses in intact animals. Cell Tissue Res 327(2): 313-322.

  24. Levy O, Appelbaum L, Leggat W, Gothlif Y, Hayward DC, Miller DJ and Hoegh-Guldberg O (2007). Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science 318(5849): 467-470.

  25. Ziv L and Gothilf Y (2006). Circadian time-keeping during early stages of development. Proc Natl Acad Sci U S A 103(11): 4146-4151.

  26. Zilberman-Peled B, Ron B, Gross A, Finberg JP and Gothilf Y (2006). A possible new role for fish retinal serotonin-N-acetyltransferase-1 (AANAT1): Dopamine metabolism. Brain Res 1073-1074: 220-228.

  27. Appelbaum L and Gothilf Y (2006). Mechanism of pineal-specific gene expression: the role of E-box and photoreceptor conserved elements. Mol Cell Endocrinol 252(1-2): 27-33.

  28. Ziv L, Levkovitz S, Toyama R, Falcon J and Gothilf Y (2005). Functional development of the zebrafish pineal gland: light-induced expression of period2 is required for onset of the circadian clock. J Neuroendocrinol 17(5): 314-320.

  29. Appelbaum L, Anzulovich A, Baler R and Gothilf Y (2005). Homeobox-clock protein interaction in zebrafish. A shared mechanism for pineal-specific and circadian gene expression. J Biol Chem 280(12): 11544-11551.

  30. Appelbaum L, Toyama R, Dawid IB, Klein DC, Baler R and Gothilf Y (2004). Zebrafish serotonin-N-acetyltransferase-2 gene regulation: pineal-restrictive downstream module contains a functional E-box and three photoreceptor conserved elements. Mol Endocrinol 18(5): 1210-1221.

  31. Falcon J, Gothilf Y, Coon SL, Boeuf G and Klein DC (2003). Genetic, temporal and developmental differences between melatonin rhythm generating systems in the teleost fish pineal organ and retina. J Neuroendocrinol 15(4): 378-382.

  32. Gothilf Y, Toyama R, Coon SL, Du SJ, Dawid IB and Klein DC (2002). Pineal-specific expression of green fluorescent protein under the control of the serotonin-N-acetyltransferase gene regulatory regions in transgenic zebrafish. Dev Dyn 225(3): 241-249.

  33. Gothilf Y, Coon SL, Toyama R, Chitnis A, Namboodiri MA and Klein DC (1999). Zebrafish serotonin N-acetyltransferase-2: marker for development of pineal photoreceptors and circadian clock function. Endocrinology 140(10): 4895-4903.

  34. Gothilf Y, Munoz-Cueto JA, Sagrillo CA, Selmanoff M, Chen TT, Kah O, Elizur A and Zohar Y (1996). Three forms of gonadotropin-releasing hormone in a perciform fish (Sparus aurata): complementary deoxyribonucleic acid characterization and brain localization. Biol Reprod 55(3): 636-645.

 

bottom of page